Serveur d'exploration sur le peuplier

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Analysis of gene co-expression networks of phosphate starvation and aluminium toxicity responses in Populus spp.

Identifieur interne : 000B32 ( Main/Exploration ); précédent : 000B31; suivant : 000B33

Analysis of gene co-expression networks of phosphate starvation and aluminium toxicity responses in Populus spp.

Auteurs : Thiago Bergamo Cardoso [Brésil] ; Renan Terassi Pinto [Brésil] ; Luciano Vilela Paiva [Brésil]

Source :

RBID : pubmed:31600239

Descripteurs français

English descriptors

Abstract

The adaptation of crops to acid soils is needed for the maintenance of food security in a sustainable way, as decreasing fertilizers use and mechanical interventions in the soil would favor the reduction of agricultural practices' environmental impact. Phosphate deficiency and the presence of reactive aluminum affect vital processes to the plant in this soil, mostly water and nutrient absorption. From this, the understanding of the molecular response to these stresses can foster strategies for genetic improvement, so the aim was to broadly analyze the transcriptional variations in Poupulus spp. in response to these abiotic stresses, as a plant model for woody crops. A co-expression network was constructed among 3,180 genes differentially expressed in aluminum-stressed plants with 34,988 connections. Of this total, 344 genes presented two-fold transcriptional variation and the group of genes associated with those regulated after 246 hours of stress had higher number of connections per gene, with some already characterized genes related to this stress as main hubs. Another co-expression network was made up of 8,380 connections between 550 genes regulated by aluminum stress and phosphate deficiency, in which 380 genes had similar profile in both stresses and only eight with transcriptional variation higher than 20%. All the transcriptomic data are presented here with functional enrichment and homology comparisons with already characterized genes in another species that are related to the explored stresses, in order to provide a broad analysis of the co-opted responses for both the stresses as well as some specificity. This approach improves our understanding regarding the plants adaptation to acid soils and may contribute to strategies of crop genetic improvement for this condition that is widely present in regions of high agricultural activity.

DOI: 10.1371/journal.pone.0223217
PubMed: 31600239
PubMed Central: PMC6786596


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Analysis of gene co-expression networks of phosphate starvation and aluminium toxicity responses in Populus spp.</title>
<author>
<name sortKey="Cardoso, Thiago Bergamo" sort="Cardoso, Thiago Bergamo" uniqKey="Cardoso T" first="Thiago Bergamo" last="Cardoso">Thiago Bergamo Cardoso</name>
<affiliation wicri:level="1">
<nlm:affiliation>Central Laboratory of Molecular Biology, Department of Chemistry, Federal University of Lavras, Lavras, Brazil.</nlm:affiliation>
<country xml:lang="fr">Brésil</country>
<wicri:regionArea>Central Laboratory of Molecular Biology, Department of Chemistry, Federal University of Lavras, Lavras</wicri:regionArea>
<wicri:noRegion>Lavras</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Pinto, Renan Terassi" sort="Pinto, Renan Terassi" uniqKey="Pinto R" first="Renan Terassi" last="Pinto">Renan Terassi Pinto</name>
<affiliation wicri:level="1">
<nlm:affiliation>Central Laboratory of Molecular Biology, Department of Chemistry, Federal University of Lavras, Lavras, Brazil.</nlm:affiliation>
<country xml:lang="fr">Brésil</country>
<wicri:regionArea>Central Laboratory of Molecular Biology, Department of Chemistry, Federal University of Lavras, Lavras</wicri:regionArea>
<wicri:noRegion>Lavras</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Paiva, Luciano Vilela" sort="Paiva, Luciano Vilela" uniqKey="Paiva L" first="Luciano Vilela" last="Paiva">Luciano Vilela Paiva</name>
<affiliation wicri:level="1">
<nlm:affiliation>Central Laboratory of Molecular Biology, Department of Chemistry, Federal University of Lavras, Lavras, Brazil.</nlm:affiliation>
<country xml:lang="fr">Brésil</country>
<wicri:regionArea>Central Laboratory of Molecular Biology, Department of Chemistry, Federal University of Lavras, Lavras</wicri:regionArea>
<wicri:noRegion>Lavras</wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2019">2019</date>
<idno type="RBID">pubmed:31600239</idno>
<idno type="pmid">31600239</idno>
<idno type="doi">10.1371/journal.pone.0223217</idno>
<idno type="pmc">PMC6786596</idno>
<idno type="wicri:Area/Main/Corpus">000667</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000667</idno>
<idno type="wicri:Area/Main/Curation">000667</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000667</idno>
<idno type="wicri:Area/Main/Exploration">000667</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Analysis of gene co-expression networks of phosphate starvation and aluminium toxicity responses in Populus spp.</title>
<author>
<name sortKey="Cardoso, Thiago Bergamo" sort="Cardoso, Thiago Bergamo" uniqKey="Cardoso T" first="Thiago Bergamo" last="Cardoso">Thiago Bergamo Cardoso</name>
<affiliation wicri:level="1">
<nlm:affiliation>Central Laboratory of Molecular Biology, Department of Chemistry, Federal University of Lavras, Lavras, Brazil.</nlm:affiliation>
<country xml:lang="fr">Brésil</country>
<wicri:regionArea>Central Laboratory of Molecular Biology, Department of Chemistry, Federal University of Lavras, Lavras</wicri:regionArea>
<wicri:noRegion>Lavras</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Pinto, Renan Terassi" sort="Pinto, Renan Terassi" uniqKey="Pinto R" first="Renan Terassi" last="Pinto">Renan Terassi Pinto</name>
<affiliation wicri:level="1">
<nlm:affiliation>Central Laboratory of Molecular Biology, Department of Chemistry, Federal University of Lavras, Lavras, Brazil.</nlm:affiliation>
<country xml:lang="fr">Brésil</country>
<wicri:regionArea>Central Laboratory of Molecular Biology, Department of Chemistry, Federal University of Lavras, Lavras</wicri:regionArea>
<wicri:noRegion>Lavras</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Paiva, Luciano Vilela" sort="Paiva, Luciano Vilela" uniqKey="Paiva L" first="Luciano Vilela" last="Paiva">Luciano Vilela Paiva</name>
<affiliation wicri:level="1">
<nlm:affiliation>Central Laboratory of Molecular Biology, Department of Chemistry, Federal University of Lavras, Lavras, Brazil.</nlm:affiliation>
<country xml:lang="fr">Brésil</country>
<wicri:regionArea>Central Laboratory of Molecular Biology, Department of Chemistry, Federal University of Lavras, Lavras</wicri:regionArea>
<wicri:noRegion>Lavras</wicri:noRegion>
</affiliation>
</author>
</analytic>
<series>
<title level="j">PloS one</title>
<idno type="eISSN">1932-6203</idno>
<imprint>
<date when="2019" type="published">2019</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Adaptation, Physiological (genetics)</term>
<term>Aluminum (toxicity)</term>
<term>Crops, Agricultural (MeSH)</term>
<term>Fertilizers (toxicity)</term>
<term>Gene Expression Regulation, Plant (drug effects)</term>
<term>Gene Regulatory Networks (drug effects)</term>
<term>Humans (MeSH)</term>
<term>Phosphates (metabolism)</term>
<term>Populus (drug effects)</term>
<term>Populus (genetics)</term>
<term>Populus (metabolism)</term>
<term>Soil (chemistry)</term>
<term>Starvation (genetics)</term>
<term>Stress, Physiological (genetics)</term>
<term>Transcriptome (drug effects)</term>
<term>Transcriptome (genetics)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Adaptation physiologique (génétique)</term>
<term>Aluminium (toxicité)</term>
<term>Engrais (toxicité)</term>
<term>Humains (MeSH)</term>
<term>Inanition (génétique)</term>
<term>Phosphates (métabolisme)</term>
<term>Populus (effets des médicaments et des substances chimiques)</term>
<term>Populus (génétique)</term>
<term>Populus (métabolisme)</term>
<term>Produits agricoles (MeSH)</term>
<term>Régulation de l'expression des gènes végétaux (effets des médicaments et des substances chimiques)</term>
<term>Réseaux de régulation génique (effets des médicaments et des substances chimiques)</term>
<term>Sol (composition chimique)</term>
<term>Stress physiologique (génétique)</term>
<term>Transcriptome (effets des médicaments et des substances chimiques)</term>
<term>Transcriptome (génétique)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="chemistry" xml:lang="en">
<term>Soil</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Phosphates</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="toxicity" xml:lang="en">
<term>Aluminum</term>
<term>Fertilizers</term>
</keywords>
<keywords scheme="MESH" qualifier="composition chimique" xml:lang="fr">
<term>Sol</term>
</keywords>
<keywords scheme="MESH" qualifier="drug effects" xml:lang="en">
<term>Gene Expression Regulation, Plant</term>
<term>Gene Regulatory Networks</term>
<term>Populus</term>
<term>Transcriptome</term>
</keywords>
<keywords scheme="MESH" qualifier="effets des médicaments et des substances chimiques" xml:lang="fr">
<term>Populus</term>
<term>Régulation de l'expression des gènes végétaux</term>
<term>Réseaux de régulation génique</term>
<term>Transcriptome</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Adaptation, Physiological</term>
<term>Populus</term>
<term>Starvation</term>
<term>Stress, Physiological</term>
<term>Transcriptome</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>Adaptation physiologique</term>
<term>Inanition</term>
<term>Populus</term>
<term>Stress physiologique</term>
<term>Transcriptome</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Populus</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Phosphates</term>
<term>Populus</term>
</keywords>
<keywords scheme="MESH" qualifier="toxicité" xml:lang="fr">
<term>Aluminium</term>
<term>Engrais</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Crops, Agricultural</term>
<term>Humans</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Humains</term>
<term>Produits agricoles</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">The adaptation of crops to acid soils is needed for the maintenance of food security in a sustainable way, as decreasing fertilizers use and mechanical interventions in the soil would favor the reduction of agricultural practices' environmental impact. Phosphate deficiency and the presence of reactive aluminum affect vital processes to the plant in this soil, mostly water and nutrient absorption. From this, the understanding of the molecular response to these stresses can foster strategies for genetic improvement, so the aim was to broadly analyze the transcriptional variations in Poupulus spp. in response to these abiotic stresses, as a plant model for woody crops. A co-expression network was constructed among 3,180 genes differentially expressed in aluminum-stressed plants with 34,988 connections. Of this total, 344 genes presented two-fold transcriptional variation and the group of genes associated with those regulated after 246 hours of stress had higher number of connections per gene, with some already characterized genes related to this stress as main hubs. Another co-expression network was made up of 8,380 connections between 550 genes regulated by aluminum stress and phosphate deficiency, in which 380 genes had similar profile in both stresses and only eight with transcriptional variation higher than 20%. All the transcriptomic data are presented here with functional enrichment and homology comparisons with already characterized genes in another species that are related to the explored stresses, in order to provide a broad analysis of the co-opted responses for both the stresses as well as some specificity. This approach improves our understanding regarding the plants adaptation to acid soils and may contribute to strategies of crop genetic improvement for this condition that is widely present in regions of high agricultural activity.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">31600239</PMID>
<DateCompleted>
<Year>2020</Year>
<Month>03</Month>
<Day>12</Day>
</DateCompleted>
<DateRevised>
<Year>2020</Year>
<Month>03</Month>
<Day>12</Day>
</DateRevised>
<Article PubModel="Electronic-eCollection">
<Journal>
<ISSN IssnType="Electronic">1932-6203</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>14</Volume>
<Issue>10</Issue>
<PubDate>
<Year>2019</Year>
</PubDate>
</JournalIssue>
<Title>PloS one</Title>
<ISOAbbreviation>PLoS One</ISOAbbreviation>
</Journal>
<ArticleTitle>Analysis of gene co-expression networks of phosphate starvation and aluminium toxicity responses in Populus spp.</ArticleTitle>
<Pagination>
<MedlinePgn>e0223217</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1371/journal.pone.0223217</ELocationID>
<Abstract>
<AbstractText>The adaptation of crops to acid soils is needed for the maintenance of food security in a sustainable way, as decreasing fertilizers use and mechanical interventions in the soil would favor the reduction of agricultural practices' environmental impact. Phosphate deficiency and the presence of reactive aluminum affect vital processes to the plant in this soil, mostly water and nutrient absorption. From this, the understanding of the molecular response to these stresses can foster strategies for genetic improvement, so the aim was to broadly analyze the transcriptional variations in Poupulus spp. in response to these abiotic stresses, as a plant model for woody crops. A co-expression network was constructed among 3,180 genes differentially expressed in aluminum-stressed plants with 34,988 connections. Of this total, 344 genes presented two-fold transcriptional variation and the group of genes associated with those regulated after 246 hours of stress had higher number of connections per gene, with some already characterized genes related to this stress as main hubs. Another co-expression network was made up of 8,380 connections between 550 genes regulated by aluminum stress and phosphate deficiency, in which 380 genes had similar profile in both stresses and only eight with transcriptional variation higher than 20%. All the transcriptomic data are presented here with functional enrichment and homology comparisons with already characterized genes in another species that are related to the explored stresses, in order to provide a broad analysis of the co-opted responses for both the stresses as well as some specificity. This approach improves our understanding regarding the plants adaptation to acid soils and may contribute to strategies of crop genetic improvement for this condition that is widely present in regions of high agricultural activity.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Cardoso</LastName>
<ForeName>Thiago Bergamo</ForeName>
<Initials>TB</Initials>
<AffiliationInfo>
<Affiliation>Central Laboratory of Molecular Biology, Department of Chemistry, Federal University of Lavras, Lavras, Brazil.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Pinto</LastName>
<ForeName>Renan Terassi</ForeName>
<Initials>RT</Initials>
<AffiliationInfo>
<Affiliation>Central Laboratory of Molecular Biology, Department of Chemistry, Federal University of Lavras, Lavras, Brazil.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Paiva</LastName>
<ForeName>Luciano Vilela</ForeName>
<Initials>LV</Initials>
<Identifier Source="ORCID">0000-0002-2577-2168</Identifier>
<AffiliationInfo>
<Affiliation>Central Laboratory of Molecular Biology, Department of Chemistry, Federal University of Lavras, Lavras, Brazil.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2019</Year>
<Month>10</Month>
<Day>10</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>PLoS One</MedlineTA>
<NlmUniqueID>101285081</NlmUniqueID>
<ISSNLinking>1932-6203</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D005308">Fertilizers</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D010710">Phosphates</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D012987">Soil</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>CPD4NFA903</RegistryNumber>
<NameOfSubstance UI="D000535">Aluminum</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000222" MajorTopicYN="N">Adaptation, Physiological</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000535" MajorTopicYN="N">Aluminum</DescriptorName>
<QualifierName UI="Q000633" MajorTopicYN="Y">toxicity</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018556" MajorTopicYN="N">Crops, Agricultural</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005308" MajorTopicYN="N">Fertilizers</DescriptorName>
<QualifierName UI="Q000633" MajorTopicYN="N">toxicity</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018506" MajorTopicYN="N">Gene Expression Regulation, Plant</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D053263" MajorTopicYN="N">Gene Regulatory Networks</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006801" MajorTopicYN="N">Humans</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010710" MajorTopicYN="N">Phosphates</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D032107" MajorTopicYN="N">Populus</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012987" MajorTopicYN="N">Soil</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013217" MajorTopicYN="N">Starvation</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013312" MajorTopicYN="N">Stress, Physiological</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D059467" MajorTopicYN="N">Transcriptome</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
</MeshHeadingList>
<CoiStatement>The authors have declared that no competing interests exist.</CoiStatement>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2019</Year>
<Month>05</Month>
<Day>16</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2019</Year>
<Month>09</Month>
<Day>16</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2019</Year>
<Month>10</Month>
<Day>11</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2019</Year>
<Month>10</Month>
<Day>11</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2020</Year>
<Month>3</Month>
<Day>13</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>epublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">31600239</ArticleId>
<ArticleId IdType="doi">10.1371/journal.pone.0223217</ArticleId>
<ArticleId IdType="pii">PONE-D-19-13910</ArticleId>
<ArticleId IdType="pmc">PMC6786596</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>New Phytol. 2009 Jun;182(4):1013-25</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19383103</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Dev Cell. 2019 Mar 11;48(5):599-615</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30861374</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ann Bot. 2002 Dec;90(6):681-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12451023</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2009 Aug 15;25(16):2092-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19505942</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Plant Biol. 2010 Jul 17;10:150</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20637123</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2017 Jun;90(5):868-885</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27859875</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2006;57(4):943-51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16488918</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Int J Mol Sci. 2016 Jun 24;17(7):</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27347937</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Plant Physiol. 2018 Apr 17;226:31-39</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29698910</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Plant Biol. 2007;58:435-58</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17280524</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Plant Biol. 2016 Sep 23;16(1):206</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27663513</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Sci. 2014 Jun;223:8-15</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24767110</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Planta. 2013 Apr;237(4):979-89</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23187679</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2012 Aug 23;488(7412):535-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22914168</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Plant Sci. 2017 Jul;22(7):553-555</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28487046</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Genet Genomics. 2016 Nov 20;43(11):631-638</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27890545</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Plant Biol. 2015;66:571-98</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25621514</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2004 Feb 12;20(3):307-15</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14960456</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2007 May;144(1):197-205</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17351051</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Plant Sci. 2017 Feb 02;8:26</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28217130</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2014 May 23;26(5):2129-2142</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24858935</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Res Notes. 2015 Oct 12;8:555</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26459023</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Environ. 2009 Dec;32(12):1633-51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19712066</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Plant Biol. 2010 Aug 23;10:185</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20727216</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Plant Sci. 2016 Sep 16;7:1398</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27695473</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2009 May;150(1):281-94</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19321711</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Plant Sci. 2016 Dec 21;7:1920</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28066475</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>AoB Plants. 2015 Aug 17;7:null</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26286222</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Signal Behav. 2016;11(2):e1131371</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26689896</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Int J Mol Sci. 2019 Mar 28;20(7):null</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30925682</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Genet. 2015 Apr;16(4):237-51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25752530</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2005 Sep 15;21(18):3674-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16081474</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Sci Rep. 2015 Jul 20;5:12217</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26193631</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2015 Apr;167(4):1511-26</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25670816</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2016 Jun;67(12):3655-64</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27190050</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2006 Sep 15;313(5793):1596-604</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16973872</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Int J Mol Sci. 2019 Jul 24;20(15):null</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">31344908</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Differentiation. 2010 Jul;80(1):1-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20219281</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant. 2014 Feb;7(2):311-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23935008</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2018 Jan 23;69(3):467-481</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29294054</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2013 Sep;163(1):180-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23839867</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2018 Mar;217(4):1654-1666</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29341123</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Tree Physiol. 2018 Oct 1;38(10):1588-1597</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30265349</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2019 Sep;99(5):937-949</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">31034704</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol Biochem. 2018 Sep;130:445-454</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30077920</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>IUBMB Life. 2014 Mar;66(3):156-166</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24659537</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2017 Jan 4;45(D1):D1040-D1045</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27924042</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Brésil</li>
</country>
</list>
<tree>
<country name="Brésil">
<noRegion>
<name sortKey="Cardoso, Thiago Bergamo" sort="Cardoso, Thiago Bergamo" uniqKey="Cardoso T" first="Thiago Bergamo" last="Cardoso">Thiago Bergamo Cardoso</name>
</noRegion>
<name sortKey="Paiva, Luciano Vilela" sort="Paiva, Luciano Vilela" uniqKey="Paiva L" first="Luciano Vilela" last="Paiva">Luciano Vilela Paiva</name>
<name sortKey="Pinto, Renan Terassi" sort="Pinto, Renan Terassi" uniqKey="Pinto R" first="Renan Terassi" last="Pinto">Renan Terassi Pinto</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PoplarV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000B32 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000B32 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PoplarV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:31600239
   |texte=   Analysis of gene co-expression networks of phosphate starvation and aluminium toxicity responses in Populus spp.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:31600239" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PoplarV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 12:07:19 2020. Site generation: Wed Nov 18 12:16:31 2020